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Introduction
3D object detection using LiDAR-generated point clouds is crucial for the perceptual sys-

tems in autonomous vehicles, offering detailed environmental insights. However, this pro-

cess poses significant computational demands.

Adaptability: The system must dynamically adapt to changing latency needs, influenced

by diverse environmental conditions.

Computational Challenges: Inference on embedded GPUs is essential to reduce end-to-

end latency and maintain data privacy.

Contention- andContent-Aware Scheduling: Choose an execution branch that is optimal

based on current resource and input content.
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Motivational Studies

Figure 1.Under resource contention, baseline (DSVT [CVPR2023]) (Left) shows FP results because of accumu-

lated detection lag, while Agile3D (Right) keeps pace with the latency requirement and shows TP results.

3D vs 2D Object Detection: Our study examines the design challenges in 3D object detection using point

clouds, comparing 2D and 3D approaches, and highlights the complexities of tuning key parameters. The 3D

Encoder—voxelization, voxel encoder, and 3D spatial encoder—dominate inference latency and memory use.

Figure 2. Comparison of execution time and model size for 2D and 3D models. 3D models require higher

computation for point clouds but offer better memory efficiency.

Figure 3. Mean latency with standard deviation

across branches. Higher contention increases vari-

ability and limits branches within the SLO.

Figure 4.Comparison of 3Dmodels: No single model

dominates across all latency ranges, motivating the

need for adaptive switching among models.

Figure 5. Visualization of diverse point clouds: Vehicles [L], Pedestrians [M], and a mix of Pedestrians, Cyclists,

and Vehicles [R]. Ground-truth boxes are green, with top branch predictions for Pedestrians red, Cyclists

orange, and Vehicles blue. The top-5 model ranking varies by context.

Challenges
Embedded 3D detection faces three key challenges:

1. Embedded GPUs have tight compute/memory budgets and serve multiple tasks.

2. Voxelization and sparse 3D convolutions in the encoder greatly increase latency and re-

source usage versus 2D workflows.

3. Scene-dependent sensor inputs and fluctuating co-located applications create rapid con-

tent and contention shifts that demand online adaptation.

Our Adaptive 3D Object Detection System

Figure 6. Agile3D integrates MEF and CARL for dynamic branch selection based on input content, contention

levels, and latency SLOs. Supervised training with DPO fine-tuning and five control knobs (CK) ensure adapt-

ability across diverse scenarios

Agile3D incorporates a Multi-branch Execution Framework (MEF) and a Contention- and

Content-Aware RL-based (CARL) controller. It tunes key 3D components to balance latency

and accuracy by selecting the optimal branch at runtime. CARL aims to select the optimal

execution branch that meets the latency SLO and maximizes accuracy, achieved through

supervised initial training and Direct Preference Optimization (DPO) fine-tuning.

Figure 7. The CARL controller uses a shared architecture for policy and reference models, integrating GD-

MAE for 3D features, transformers for prior detection results embedding, SSM for sequence processing, and

positional embeddings for latency objectives, enabling adaptive branch selection.

CARL dynamically schedules branches by considering contention levels and frame-specific

input content. DPO refines branch selection through preference comparisons instead of

absolute scores. We employ an Approximate Oracle controller using Beam Search to pro-

vide preference labels, which significantly reduce human labeling efforts.

Evaluation
Two embedded GPUs: NVIDIA AGX Xavier and Orin. Three datasets: Waymo, nuScenes,

and KITTI. Baselines: two system controllers: Chanakya [NeurIPS ’24], LiteReconfig

[EuroSys ’22], and six 3D models: CenterPoint [CVPR’21], Part-A2 [TPAMI’20], SSN

[ECCV’20], PointRCNN [CVPR’19], PointPillars [CVPR’19], SECOND [Sensors’18].

Figure 8.E2E evaluation ofAgile3D across varying contention levels and latency SLOs using theWaymo dataset

and on Orin GPU. Agile3D consistently achieves superior accuracy, shining on the Pareto frontier across all

contention levels and latency SLOs.

Figure 9. Agile3D vs. baselines on

Waymo (Orin). Ours achieves 1-

2.5% higher accuracy while adapt-

ing to latency SLOs of 50-350 ms,

outperforming baselines.

Figure 10. Agile3D vs. baselines on

nuScenes (Orin). Ours has 7-16%

higher accuracy than CP-Pillar, PP,

and SSN, and meets SLOs of 100-

250 ms.

Figure 11. Agile3D vs. baselines on

KITTI (Xavier). Agile3D adapts to

latency SLOs of 50-150ms, achiev-

ing 5-7% higher accuracy than PP

and CP under the 100 ms SLO.

Figure 12. Agile3D adapts to chang-

ing contention levels under 500 ms

latency SLO. Baselines fail to adapt.

Figure 13. Activating more control

knobs improves accuracy and sat-

isfies lower latency SLOs.

Figure 14. Switching overhead be-

tween branches. Mean overhead

<1 ms with pre-buffered models.

Conclusion

We design the first adaptive 3D object detection system for embedded GPUs, which

excels in achieving SOTA accuracy while consistently meeting stringent runtime latency

SLOs across diverse resource contention levels.

The system features two complementary and innovative controllers: CARL controller for

high contention scenarios and DA-LUT controller for contention-free scenarios.

By leveraging the MEF and CARL controller, Agile3D efficiently buffers all 3D models in

GPU memory, enabling rapid model switching within 1 ms.

Across multiple datasets and hardware platforms, Agile3D demonstrates superior adapt-

ability and better accuracy.
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